Dmd053801 2076..2080
ثبت نشده
چکیده
Quantification methods employing stable isotope-labeled peptide standards and liquid chromatography–tandem mass spectrometry are increasingly being used to measure enzyme amounts in biologic samples. Isoform concentrations, combined with catalytic information, can be used in absorption, distribution, metabolism, and excretion studies to improve accuracy of in vitro/in vivo predictions. We quantified isoforms of uridine-diphosphate glucuronosyltransferase (UGT) 1A and 2B in 12 commercially available recombinant UGTs (recUGTs) (n = 49 samples) using nano-ultra-high-performance liquid chromatography–tandem mass spectrometry with selected reaction monitoring). Samples were trypsin-digested and analyzed using our previously published method. Two MRMs were collected per peptide and averaged. Where available, at least two peptides were measured per UGT isoform. The assay could detect UGTs in all recombinant preparations: recUGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17, with limit of detection below 1.0 pmol/mg protein for all isoforms. The assay had excellent linearity in the range observed (2–15.5 pmol/mg, after dilution). Examples of concentrations determined were 1465, 537, 538, 944, 865, 698, 604, 791, 382, 1149, 307, and 740 pmol/mg protein for the respective isoforms. There was a 6.9-fold difference between the maximum and minimum recUGT concentrations. The range of concentrations determined indicates that catalytic rates per mg total protein in vitro will not accurately reflect isoform inherent specific activity for a particular drug candidate. This is the first report of a targeted precise quantification of commercially available recUGTs. The assay has potential for use in comparing UGT amounts with catalytic activity determined using probe substrates, thus allowing representation of catalysis as per pmol of UGT isoform.
منابع مشابه
Dmd053801 2076..2080
Quantification methods employing stable isotope-labeled peptide standards and liquid chromatography–tandem mass spectrometry are increasingly being used to measure enzyme amounts in biologic samples. Isoform concentrations, combined with catalytic information, can be used in absorption, distribution, metabolism, and excretion studies to improve accuracy of in vitro/in vivo predictions. We quant...
متن کاملENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action.
ENMD-2076 is a novel orally active, small molecule kinase inhibitor with a mechanism of action involving several pathways key to tumor growth and survival: angiogenesis, proliferation, and the cell cycle. ENMD-2076 has selective activity against the mitotic kinase Aurora A, as well as kinases involved in angiogenesis (VEGFRs, FGFRs). ENMD-2076 inhibited the growth in vitro of a wide range of hu...
متن کاملEfficacy and Molecular Mechanisms of Differentiated Response to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Preclinical Models of p53-Mutated Triple-Negative Breast Cancer
PURPOSE Triple-negative breast cancer (TNBC) is a subtype associated with poor prognosis and for which there are limited therapeutic options. The purpose of this study was to evaluate the efficacy of ENMD-2076 in p53-mutated TNBC patient-derived xenograft (PDX) models and describe patterns of terminal cell fate in models demonstrating sensitivity, intrinsic resistance, and acquired resistance t...
متن کاملPreclinical Development ENMD-2076 Is an Orally Active Kinase Inhibitor with Antiangiogenic and Antiproliferative Mechanisms of Action
ENMD-2076 is a novel orally active, small molecule kinase inhibitor with a mechanism of action involving several pathways key to tumor growth and survival: angiogenesis, proliferation, and the cell cycle. ENMD2076 has selective activity against the mitotic kinase Aurora A, as well as kinases involved in angiogenesis (VEGFRs, FGFRs). ENMD-2076 inhibited the growth in vitro of a wide range of hum...
متن کامل